Comparison of Smart Contract

Vulnerability Detection tool

Member :

Kuo-Hao Lai kuohaol023@vt.edu
Alex Tsai alextsail618@vt.edu

Md Mohaimin Al Barat barat@vt.edu

mailto:kuohao1023@vt.edu
mailto:alextsai1618@vt.edu
mailto:alextsai1618@vt.edu

Agenda

Background
e Attack introduction

e Smart Contract Vulnerability analytic Tools
e Comparison of Vulnerability analytic Tools
e Conclusion

Q&A

Background

e Security challenges in decentralized systems
e Vulnerability detection techniques

e Best practices for smart contract security

SMART CONTRACT SELLER

VIRGINIA TECH

Security Challenges in Decentralized Systems

e \Vulnerabilities in smart contract code
O Exploit by attacker to steal funds =

e Manipulation of oracle data e
)

O Incorrect data < =

O Unintended behavior

Security Challenges in Decentralized Systems
(Con't)

® Risks of centralized points in decentralized systems A
O undermine the trust in the decentralized system

® Increased targeting by bad actors

O harm the reputation of the entire ecosystem

e Example:

o DAO attack
o DefFiflash loan attacks

O Centralized exchange hacks

Best Practices for Smart Contract Security

e Conduct thorough audits
O prevent reentrancy attacks
e Use established coding patterns
O secure access control
e Limit contract complexity
O mitigate front-running attacks
e Implement upgradeability and emergency stop mechanisms

O prevent potential vulnerabilities

Attack Introduction

Reentrance attacks
e Access Control attacks
e Front Running attacks
e Unchecked low-level calls attacks

Importance of security measures

VIRGINIA TECH

Reentrance attacks

/ Attacker : Ether 1 \

Attack function ()

/ Victim : Ether 10 \

Attacker withdraw Balance : 1

{
call victim withdraw
function

withdraw function () {

check balance __r
Send coin
4 N ~
update ;)alance o Fallback function ()
{
o call victim withdraw
function

___r

Access Control attacks

il pragma solidity °0.6.0;

2

3 v contract Wallet {

4 address public owner;

5 mapping(address => uint) public balances;
6

7 v constructor() public {

8 owner = msg.sender;

9 }

10

il 7 function deposit() public payable {

12 balances[msg.sender] += msg.value;

13 }

14

15 v function withdraw(uint amount) public {
16 require(balances[msg.sender] >= amount, "Insufficient balance.");
17 msg.sender.call{value: amount}("");
18 balances [msg.sender] -= amount;

19 }

20

21 function transferOwnership(address newOwner) public {
22 owner = newOwner;

Front Running attacks

1 é/ Original Source Code

2 contract KingOfEtherThrone {

3 address public king;

4 uint public balance;

)

6 function claimThrone() public payable {
7 require(

8 msg.value > balance,

9 "Insufficient payment to claim the throne."
10);
11 king.transfer(balance);
12 king = msg.sender;
13 balance = msg.value;

14 }
15

Unchecked low-level calls attacks

1 pragma solidity 7°0.6.0;

2

3 contract UncheckedCalls {

4 mapping(address => uint) public balances;

5

6 function deposit() public payable {

7 balances[msg.sender] += msg.value;

8 }

9

10 function withdraw(uint amount) public {

11 require(balances[msg.sender] >= amount, "Insufficient balance.");
12

13 (bool success,) = msg.sender.call{value: amount}("");
14 if (!success) {

15 revert("Withdrawal failed.");

16 }

17

18 balances[msg.sender] —= amount;

19 }

20

Analysis Tools

Input to the Tool

's C "
e Why do we need? P
e (ategories: e Static | Form.Spec
g Analysis Tool
O Static Analysis Tool . 1°
52
m Mythril, Smartcheck, etc. ¥ —
ETE Solidity
. . 2 g Code
o Dynamic Analysis Tool £
=R
m contractLarva, MAIAN etc. o]
qu Dynamic -
&' | Analysis Tool | EVM Byte
3 Code

Analysis Tools: Mythril

® Analyzes smart contracts written with Solidity

e Takes advantage of the symbolic execution technique with taint analysis

e Stenc

Logically
Symbolically prove or
execute code disprove

reachability

Obtain Initialize/Retrieve
bytecode account state

Analysis Tools: Mythril

® Limitations
O Unable to extend taints over memory fields

O Becomes worse when the parameters accept pass by reference

Analysis Tools: Securify

® Statically analyzes EVM bytecode
® Checks compliance and violation patterns

e Steps:

Infer Check
Semantics Patterns

Decompile

Analysis Tools: Securify

® Limitations:
o Cannot reason about numerical properties
O Does not reason about reachability

o Can be exploited by attackers

Analysis Tools: Oyente

® Based on symbolic execution

e Architectural overview:

o — - A A A S S S A S S S S A O S e
I
I
I

N

ByteCode > CFG Builder b

Ethereum] CORE | VALIDATOR
EXPLORER ‘:(>| AR —b

________________________ — —— ——

73 Bit-Vector Solver (

Visualizer

Analysis Tools: Oyente

® Limitations:
o Failsto log 72.9% of the TOD
o Detects very few vulnerabilities
O Generates false positives

Underestimates some serious bugs

Analysis Tools: SmartCheck

Runs lexical and syntactical analysis
e Uses XML file with source code in tree form

e Explores path that can lead to vulnerabilities

e Detects patterns by using XPath queries

® Limitations:

O Unable to detect vulnerabilities with taint analysis
O Unable to detect Front Running

O Only identifies low risk vulnerabilities

o

SmartBug Architecture

D

Q <

*‘ SmartBugs C

CLI

Tool's Configuration

nnnnn

Dataset

P SBCU RATED:

O Consists of 69 vulnerable smart contracts.

e SBWILD.

O Contains 47,518 contracts extracted from the Ethereum blockchain

Evaluation metrics

e Accuracy

e Number of Detected Vulnerabilities e e

-
o , O
e Execution Time L= @

Result

Accuracy
Category Mythril

Access Control

Arithmetic 15722
Denial Service a/7
Front Running 2/7
Reentrancy 5/8
Time Manipulation 0/5
Unchecked Low Calls 5/12
Other a/3
Total 31/115

| Securify

0/22

/7

2/7

5/8

0/5

3/12

0/3

17/115 10/115

Accuracy

| Smartcheck

Total

/i

VIRGINIA TECH

Result

Combine tools

Mythril |
Oyente |
Securify |
Smartcheck |

Mythril

Accuracy from combining tools

| Securify | Smartcheck |

|
33/115 29%
25/115 22%

|
31/115 27% | |
| I
| 16/115 14% |
| I

22/115 19%

| |
| 33/115 29% |
| |
| |
| |

Result

Smartcheck

Access Control 1076 2% 2 0% 614 1% 384 0%
Arithmetic 18,515 39% 34,306 72% 0 0% 7,430 15%
Denial Service 0 0% 880 1% 0 0% 11,621 24%
Front Running 2,015 4% 0 0% 7,217 15% 0 0%
Reentrancy 8,454 17% 308 0% 2,033 4% 847 1%
Time Manipulation 443 0% 0 0% 592 1% 2,867 6%
Unchecked Low Calls 443 0 0 0% 592 1% 2,867 6%

22.994 48% 34764 73% _ 8,781 18% 24,906 52%

false positives!!

Numbers of Contracts that have at least one vulnerability VZ?

VIRGINIA TECH

Result

Mythril 46 days, 07:46:55
Oyente 16 days, 04:50:11
Securify 217 days, 22:46:26
SmartCheck 5 days, 12:33:14

0:01:40 330 days and 15 hours

Conclusion

® Accuracy: Mythril ..:.. p
il
e Number of Detected Vulnerabilities: Oyente “Pya
0

e Execution Time: Oyente and SmartCheck 8 %

Conclusion

e Comparison of four security analysis tools:

® SmartBugs

o Oyente
o Muytbhril
O Securify

O Smartcheck

Future Work

