
Comparison of Smart Contract
Vulnerability Detection tool

Member :

Kuo-Hao Lai kuohao1023@vt.edu
Alex Tsai alextsai1618@vt.edu
Md Mohaimin Al Barat barat@vt.edu

mailto:kuohao1023@vt.edu
mailto:alextsai1618@vt.edu
mailto:alextsai1618@vt.edu

Agenda

● Background

● Attack introduction

● Smart Contract Vulnerability analytic Tools

● Comparison of Vulnerability analytic Tools

● Conclusion

● Q&A

Background

Background

● Security challenges in decentralized systems

● Vulnerability detection techniques

● Best practices for smart contract security

Security Challenges in Decentralized Systems

● Vulnerabilities in smart contract code

○ Exploit by attacker to steal funds

● Manipulation of oracle data

○ Incorrect data

○ Unintended behavior

Security Challenges in Decentralized Systems
(Con’t)
● Risks of centralized points in decentralized systems

○ undermine the trust in the decentralized system

● Increased targeting by bad actors

○ harm the reputation of the entire ecosystem

● Example:

○ DAO attack

○ DeFi flash loan attacks

○ Centralized exchange hacks

Best Practices for Smart Contract Security

● Conduct thorough audits
○ prevent reentrancy attacks

● Use established coding patterns
○ secure access control

● Limit contract complexity
○ mitigate front-running attacks

● Implement upgradeability and emergency stop mechanisms
○ prevent potential vulnerabilities

Attack Introduction

Attack Introduction

● Reentrance attacks

● Access Control attacks

● Front Running attacks

● Unchecked low-level calls attacks

● Importance of security measures

Reentrance attacks

Access Control attacks

Front Running attacks

Unchecked low-level calls attacks

Smart Contract
Vulnerability analytic Tool

Analysis Tools

● Why do we need?

● Categories:

○ Static Analysis Tool
■ Mythril, Smartcheck, etc.

○ Dynamic Analysis Tool
■ contractLarva, MAIAN etc.

Analysis Tools: Mythril
● Analyzes smart contracts written with Solidity

● Takes advantage of the symbolic execution technique with taint analysis

● Steps:

Analysis Tools: Mythril
● Limitations

○ Unable to extend taints over memory fields

○ Becomes worse when the parameters accept pass by reference

Analysis Tools: Securify
● Statically analyzes EVM bytecode

● Checks compliance and violation patterns

● Steps:

Analysis Tools: Securify
● Limitations:

○ Cannot reason about numerical properties

○ Does not reason about reachability

○ Can be exploited by attackers

Analysis Tools: Oyente
● Based on symbolic execution

● Architectural overview:

Analysis Tools: Oyente
● Limitations:

○ Fails to log 72.9% of the TOD

○ Detects very few vulnerabilities

○ Generates false positives

○ Underestimates some serious bugs

Analysis Tools: SmartCheck
● Runs lexical and syntactical analysis

● Uses XML file with source code in tree form

● Explores path that can lead to vulnerabilities

● Detects patterns by using XPath queries

● Limitations:

○ Unable to detect vulnerabilities with taint analysis

○ Unable to detect Front Running

○ Only identifies low risk vulnerabilities

Comparison of Vulnerability
analytic Tools

SmartBug Architecture

Dataset

● SBCURATED:

○ Consists of 69 vulnerable smart contracts.

● SBWILD:

○ Contains 47,518 contracts extracted from the Ethereum blockchain

Evaluation metrics

● Accuracy

● Number of Detected Vulnerabilities

● Execution Time

Result

Accuracy

Result

Accuracy from combining tools

Result

false positives!!
Vulnerabilities

Numbers of Contracts that have at least one vulnerability

Result

Conclusion

Conclusion

● Accuracy: Mythril

● Number of Detected Vulnerabilities: Oyente

● Execution Time: Oyente and SmartCheck

Conclusion

● Comparison of four security analysis tools:

○ Oyente

○ Mythril

○ Securify

○ Smartcheck

● SmartBugs

● Future Work

Q&A

