Comparison of Smart Contract Vulnerability Detection tool

Member:

Kuo-Hao Lai Alex Tsai Md Mohaimin Al Barat kuohao1023@vt.edu alextsai1618@vt.edu barat@vt.edu

Agenda

- Background
- Attack introduction
- Smart Contract Vulnerability analytic Tools
- Comparison of Vulnerability analytic Tools
- Conclusion
- Q&A

Background

Background

- Security challenges in decentralized systems
- Vulnerability detection techniques
- Best practices for smart contract security

Security Challenges in Decentralized Systems

- Vulnerabilities in smart contract code
 - Exploit by attacker to steal funds
- Manipulation of oracle data
 - Incorrect data
 - Unintended behavior

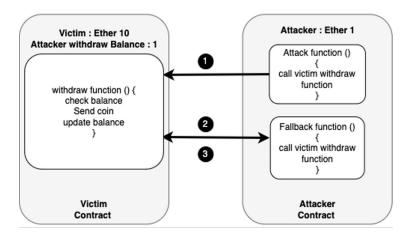
Security Challenges in Decentralized Systems (Con't)

- Risks of centralized points in decentralized systems
 - o undermine the trust in the decentralized system
- Increased targeting by bad actors
 - o harm the reputation of the entire ecosystem
- Example:
 - o DAO attack
 - DeFi flash loan attacks
 - Centralized exchange hacks

Best Practices for Smart Contract Security

- Conduct thorough audits
 - prevent reentrancy attacks
- Use established coding patterns
 - secure access control
- Limit contract complexity
 - mitigate front-running attacks
- Implement upgradeability and emergency stop mechanisms
 - prevent potential vulnerabilities

Attack Introduction


Attack Introduction

- Reentrance attacks
- Access Control attacks
- Front Running attacks
- Unchecked low-level calls attacks
- Importance of security measures

Reentrance attacks

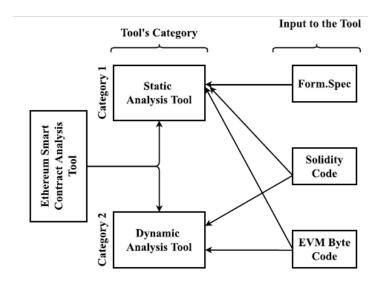
Access Control attacks

```
pragma solidity ^0.6.0;
3 ∨ contract Wallet {
         address public owner;
         mapping(address => uint) public balances;
 6
         constructor() public {
             owner = msg.sender;
10
         function deposit() public payable {
11 ~
12
             balances[msg.sender] += msg.value;
13
14
15 V
         function withdraw(uint amount) public {
16
             require(balances[msg.sender] >= amount, "Insufficient balance.");
17
             msg.sender.call{value: amount}("");
18
             balances[msg.sender] -= amount;
19
20
21 ~
         function transferOwnership(address newOwner) public {
22
             owner = newOwner;
23
24
```


Front Running attacks

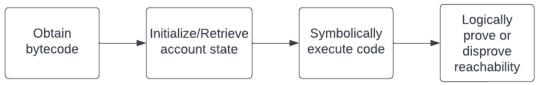
Unchecked low-level calls attacks

```
pragma solidity ^0.6.0;
     contract UncheckedCalls {
         mapping(address => uint) public balances;
          function deposit() public payable {
             balances[msg.sender] += msg.value;
          function withdraw(uint amount) public {
             require(balances[msg.sender] >= amount, "Insufficient balance.");
11
12
             (bool success,) = msq.sender.call{value: amount}("");
13
             if (!success) {
14
                 revert("Withdrawal failed.");
15
16
17
18
             balances[msg.sender] -= amount;
19
20
```



Smart Contract Vulnerability analytic Tool

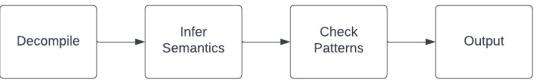
Analysis Tools


- Why do we need?
- Categories:
 - Static Analysis Tool
 - Mythril, Smartcheck, etc.
 - Dynamic Analysis Tool
 - contractLarva, MAIAN etc.

Analysis Tools: Mythril

- Analyzes smart contracts written with Solidity
- Takes advantage of the symbolic execution technique with taint analysis
- Stens.

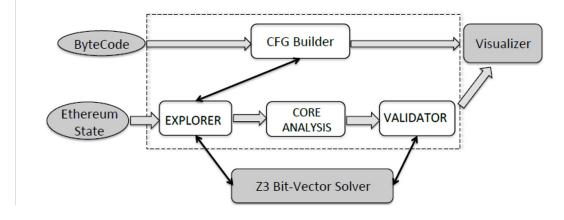
Analysis Tools: Mythril


- Limitations
 - Unable to extend taints over memory fields
 - O Becomes worse when the parameters accept pass by reference

Analysis Tools: Securify

- Statically analyzes EVM bytecode
- Checks compliance and violation patterns
- Steps:

Analysis Tools: Securify


- Limitations:
 - Cannot reason about numerical properties
 - Does not reason about reachability
 - Can be exploited by attackers

Analysis Tools: Oyente

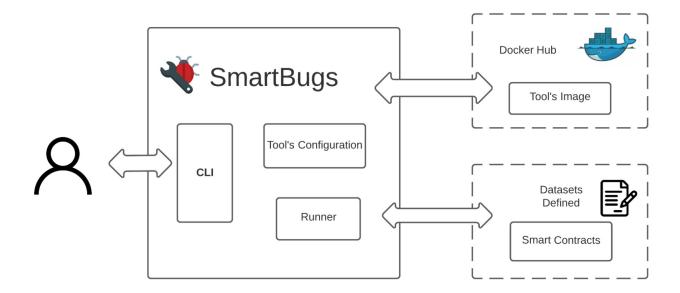
- Based on symbolic execution
- Architectural overview:

Analysis Tools: Oyente

- Limitations:
 - o Fails to log 72.9% of the TOD
 - Detects very few vulnerabilities
 - Generates false positives
 - Underestimates some serious bugs

Analysis Tools: SmartCheck

- Runs lexical and syntactical analysis
- Uses XML file with source code in tree form
- Explores path that can lead to vulnerabilities
- Detects patterns by using XPath queries
- Limitations:
 - Unable to detect vulnerabilities with taint analysis
 - Unable to detect Front Running
 - Only identifies low risk vulnerabilities



Comparison of Vulnerability analytic Tools

SmartBug Architecture

Dataset

- SBCURATED:
 - Consists of 69 vulnerable smart contracts.
- SBWILD:
 - O Contains 47,518 contracts extracted from the Ethereum blockchain

Evaluation metrics

- Accuracy
- Number of Detected Vulnerabilities
- Execution Time

	# Accuracy											
ı	Category	Mythr	il	0yent	e	Securi	.fy	Smartch	eck	Tota	ι	ļ
ı	Access Control	 4/19	21%	 0/19	 0%	 0/19	 0%	 2/19	 11%	 4/19	21%	l
ı	Arithmetic	15/22	68%	12/22	55%	0/22	0%	1/22	5%	17/22	77%	İ
ı	Denial Service	0/7	0%	0/7	0%	0/7	0%	0/7	0%	0/7	0%	İ
ı	Front Running	2/7	29%	0/7	0%	2/7	29%	0/7	0%	2/7	29%	İ
ı	Reentrancy	5/8	62%	5/8	62%	5/8	62%	5/8	62%	5/8	62%	İ
ı	Time Manipulation	0/5	0%	0/5	0%	0/5	0%	1/5	20%	1/5	20%	Ĺ
ı	Unchecked Low Calls	5/12	42%	0/12	0%	3/12	25%	4/12	33%	6/12	50%	Ĺ
ı	Other	0/3	0%	0/3	0%	0/3	0%	0/3	0%	0/3	0%	Ĺ
	Total	31/115	27%	17/115	15%	10/115	9%	13/115	11%	35/115	30%	Ī

Accuracy

f Combine tools	, Mythril	0yent	е	Securi	fy	Smartch	eck
Mythril		33/115	29%	31/115	27%	33/115	29%
0yente		İ		22/115	19%	25/115	22%
Securify		İ				16/115	14%
Smartcheck		i		i		i	

Accuracy from combining tools

Category	Mythril	Oyente	Securify	Smartcheck	
Access Control	1076 2%	2 0%	614 1%	384 0%	
Arithmetic	18,515 39%	34,306 72%	0 0%	7,430 15%	
Denial Service	0 0%	880 1%	0 0%	11,621 24%	
Front Running	2,015 4%	0 0%	7,217 15%	0 0%	
Reentrancy	8,454 17%	308 0%	2,033 4%	847 1%	
Time Manipulation	443 0%	0 0%	592 1%	2,867 6%	
Unchecked Low Calls	443 0	0 0%	592 1%	2,867 6%	
Total	22,994 48%	34,764 73%	8,781 18%	24,906 52%	

false positives!!

Numbers of Contracts that have at least one vulnerability

Tools	Average	Total
Mythril	0:01:24	46 days, 07:46:55
Oyente	0:00:30	16 days, 04:50:11
Securify	0:06:37	217 days, 22:46:26
SmartCheck	0:00:10	5 days, 12:33:14
Total	0:01:40	330 days and 15 hours

Conclusion

Conclusion

Accuracy: Mythril

• Number of Detected Vulnerabilities: Oyente

• Execution Time: Oyente and SmartCheck

Conclusion

- Comparison of four security analysis tools:
 - o Oyente
 - Mythril
 - Securify
 - o Smartcheck
- SmartBugs
- Future Work

Q&A

